Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Microbiol ; 7(10): 1635-1649, 2022 10.
Article in English | MEDLINE | ID: covidwho-2050394

ABSTRACT

Population antibody response is thought to be important in selection of virus variants. We report that SARS-CoV-2 infection elicits a population immune response that is mediated by a lineage of VH1-69 germline antibodies. A representative antibody R1-32 from this lineage was isolated. By cryo-EM, we show that it targets a semi-cryptic epitope in the spike receptor-binding domain. Binding to this non-ACE2 competing epitope results in spike destruction, thereby inhibiting virus entry. On the basis of epitope location, neutralization mechanism and analysis of antibody binding to spike variants, we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of the identified population antibody response. These substitutions, including L452R (present in the Delta variant), disrupt interactions mediated by the VH1-69-specific hydrophobic HCDR2 to impair antibody-antigen association, enabling variants to escape. The first Omicron variants were sensitive to antibody R1-32 but subvariants that harbour L452R quickly emerged and spread. Our results provide insights into how SARS-CoV-2 variants emerge and evade host immune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Epitopes/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
2.
PLoS Pathog ; 18(7): e1010583, 2022 07.
Article in English | MEDLINE | ID: covidwho-1974332

ABSTRACT

The spike (S) protein of SARS-CoV-2 has been observed in three distinct pre-fusion conformations: locked, closed and open. Of these, the function of the locked conformation remains poorly understood. Here we engineered a SARS-CoV-2 S protein construct "S-R/x3" to arrest SARS-CoV-2 spikes in the locked conformation by a disulfide bond. Using this construct we determined high-resolution structures confirming that the x3 disulfide bond has the ability to stabilize the otherwise transient locked conformations. Structural analyses reveal that wild-type SARS-CoV-2 spike can adopt two distinct locked-1 and locked-2 conformations. For the D614G spike, based on which all variants of concern were evolved, only the locked-2 conformation was observed. Analysis of the structures suggests that rigidified domain D in the locked conformations interacts with the hinge to domain C and thereby restrains RBD movement. Structural change in domain D correlates with spike conformational change. We propose that the locked-1 and locked-2 conformations of S are present in the acidic high-lipid cellular compartments during virus assembly and egress. In this model, release of the virion into the neutral pH extracellular space would favour transition to the closed or open conformations. The dynamics of this transition can be altered by mutations that modulate domain D structure, as is the case for the D614G mutation, leading to changes in viral fitness. The S-R/x3 construct provides a tool for the further structural and functional characterization of the locked conformations of S, as well as how sequence changes might alter S assembly and regulation of receptor binding domain dynamics.


Subject(s)
COVID-19 , SARS-CoV-2 , Disulfides , Humans , Protein Binding , Protein Conformation , Spike Glycoprotein, Coronavirus/metabolism
3.
Communication and Critical Cultural Studies ; 19(2):127-133, 2022.
Article in English | ProQuest Central | ID: covidwho-1873770

ABSTRACT

Public health research establishes clear links between race and health and identifies racism as a social determinant of health;however, little critical attention focuses on how public health discourses reproduce bordering mechanisms that reify Black health disparities. Centering the COVID-19 pandemic to explore how border logics reproduce such inequities, we introduce the “epidermal border” as an innovative and emancipatory framework for studying intersections of race and public health, drawing focus on the dermis (or skin) as our entry point of inquiry. This essay offers important insights into the theoretical and methodological development of more equitable public health interventions and practices.

4.
Health Promot Pract ; 22(5): 622-630, 2021 09.
Article in English | MEDLINE | ID: covidwho-1218286

ABSTRACT

Emerging research identified physical inactivity and weight-related comorbidities as significant risk factors for contracting SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), reinforcing the importance of maintaining regular exercise during the pandemic. Previous scholarship in this area examined the impact of coronavirus disease 2019 (COVID-19) across various populations. Currently, there is limited research examining how these populations engage in and navigate challenges relating to exercise during shelter-in-place mandates and no studies examining the role of social support in promoting exercise during the pandemic. In this study, we examine perceptions of social support during the COVID-19 pandemic among members who belong to a fitness community based in Oakland, California. In-depth interviews (n = 31) were used to understand how the pandemic has affected participants' perceptions of current exercise habits and how understandings of social support facilitate engagement in physical activity. Reported narratives encompassed two primary themes: (1) Facilitators of Social Support and (2) Challenges and Barriers to Social Support. Our findings highlight the importance of social support for reinforcing perceptions of exercise adherence amid challenges experienced by members of a fitness community to remain physically active during the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Atmosphere , Exercise , Humans , Pandemics/prevention & control , SARS-CoV-2 , Social Support
5.
PLoS Pathog ; 17(1): e1009246, 2021 01.
Article in English | MEDLINE | ID: covidwho-1045566

ABSTRACT

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infects cells by binding to the host cell receptor ACE2 and undergoing virus-host membrane fusion. Fusion is triggered by the protease TMPRSS2, which processes the viral Spike (S) protein to reveal the fusion peptide. SARS-CoV-2 has evolved a multibasic site at the S1-S2 boundary, which is thought to be cleaved by furin in order to prime S protein for TMPRSS2 processing. Here we show that CRISPR-Cas9 knockout of furin reduces, but does not prevent, the production of infectious SARS-CoV-2 virus. Comparing S processing in furin knockout cells to multibasic site mutants reveals that while loss of furin substantially reduces S1-S2 cleavage it does not prevent it. SARS-CoV-2 S protein also mediates cell-cell fusion, potentially allowing virus to spread virion-independently. We show that loss of furin in either donor or acceptor cells reduces, but does not prevent, TMPRSS2-dependent cell-cell fusion, unlike mutation of the multibasic site that completely prevents syncytia formation. Our results show that while furin promotes both SARS-CoV-2 infectivity and cell-cell spread it is not essential, suggesting furin inhibitors may reduce but not abolish viral spread.


Subject(s)
Cell Fusion , Furin/genetics , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization , Animals , COVID-19 , CRISPR-Cas Systems , Chlorocebus aethiops , Gene Knockout Techniques , HEK293 Cells , Humans , Protein Structure, Tertiary , SARS-CoV-2 , Serine Endopeptidases , Vero Cells
6.
Cell Stem Cell ; 27(6): 951-961.e5, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-857180

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, leads to respiratory symptoms that can be fatal. However, neurological symptoms have also been observed in some patients. The cause of these complications is currently unknown. Here, we use human-pluripotent-stem-cell-derived brain organoids to examine SARS-CoV-2 neurotropism. We find expression of viral receptor ACE2 in mature choroid plexus cells expressing abundant lipoproteins, but not in neurons or other cell types. We challenge organoids with SARS-CoV-2 spike pseudovirus and live virus to demonstrate viral tropism for choroid plexus epithelial cells but little to no infection of neurons or glia. We find that infected cells are apolipoprotein- and ACE2-expressing cells of the choroid plexus epithelial barrier. Finally, we show that infection with SARS-CoV-2 damages the choroid plexus epithelium, leading to leakage across this important barrier that normally prevents entry of pathogens, immune cells, and cytokines into cerebrospinal fluid and the brain.


Subject(s)
Blood-Brain Barrier/virology , Choroid Plexus/virology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Models, Biological , Organoids/virology , Vero Cells , Viral Tropism , Virus Internalization
7.
Nat Struct Mol Biol ; 27(10): 934-941, 2020 10.
Article in English | MEDLINE | ID: covidwho-691288

ABSTRACT

The spike (S) protein of SARS-CoV-2 mediates receptor binding and cell entry and is the dominant target of the immune system. It exhibits substantial conformational flexibility. It transitions from closed to open conformations to expose its receptor-binding site and, subsequently, from prefusion to postfusion conformations to mediate fusion of viral and cellular membranes. S-protein derivatives are components of vaccine candidates and diagnostic assays, as well as tools for research into the biology and immunology of SARS-CoV-2. Here we have designed mutations in S that allow the production of thermostable, disulfide-bonded S-protein trimers that are trapped in the closed, prefusion state. Structures of the disulfide-stabilized and non-disulfide-stabilized proteins reveal distinct closed and locked conformations of the S trimer. We demonstrate that the designed, thermostable, closed S trimer can be used in serological assays. This protein has potential applications as a reagent for serology, virology and as an immunogen.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Flow Cytometry/methods , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Betacoronavirus/genetics , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Cryoelectron Microscopy , Disulfides/chemistry , Humans , Immunoglobulin G/metabolism , Models, Molecular , Mutation , Protein Conformation , Protein Engineering/methods , Protein Multimerization , Protein Stability , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL